Mapping seabed sediments with single- and multifrequency multibeam backscatter data

Ph.D. candidate Timo C. Gaida

Group Acoustics, Faculty of Aerospace Engineering, Delft University of Technology

<u>Multibeam echosounder (30 – 700 kHz)</u>

Backscatter strength is dependent on

- seabed properties
- incident angle
- frequency

Reference: [1]

3°20'0"E

3°10'0"E

Unsupervised seabed classification

BS is dependent on seabed properties, incident angle and frequency

Reference: [2]

Theory

Requirement:

Sufficient number of measurements

--> follows Gaussian distribution

Result:

Gaussian = specific substrate

Statistical estimates:

- -BS boundaries between sediment types
- → Acoustic class (AC)
- -probability of missclassification

Applied to:

- Backscatter from a single frequency
- Backscatter from a single beam angle

>>> sediments along the swath can be resolved

Example

Measured backscatter histogram

Fit of Gaussian distribution

Chi-square test

Cleaver Bank – Survey area

Kongsberg EM 3002 – 300 kHz

Seabed substrate maps

- Multibeam backscatter
- Ground truth samples
 - > Acoustic seabed classification

Seabed substrate maps (EMODnet portal)

- Samples
- Bathymetry
- Seismic
 - Manual interpretation

- Multibeam backscatter
- Ground truth samples
 - Acoustic seabed classification

Reference: [1], [3]

Sediment classification based on MBES backscatter yields to much finer spatial discrimination of sediments

Enables sediment maps with high spatial coverage and resolution

Correlation between Acoustics and Ground Truth

Ambiguity observed for coarse sediments (~gravelly sand to sandy gravel)

Multifrequency backscatter might be a solution to solve this ambiguity

Increasing the acoustic discrimination by using multi-frequency backscatter

Acoustic backscatter is dependent on seabed properties, incident angle

and frequency

Frequency dependency of acoustic backscatter

Acoustic wavelength influences:

(2)

(1)
Relationship to
(seabed) roughness

Signal penetration depth (Volume scattering)

(3)
Scattering regime
(Rayleigh to geometric scattering)

What are the challenges?

1) Appropriate data processing for multi-frequency data

 Classification method to combine information from different frequencies in a single map

3) What part of the seabed is represented per frequency

R2 Sonic 2026

Multispectral mode

Broadband multibeam system

- 90 kHz
- 200-450 kHz, 1 Hz granularity
- Up to 5 frequencies on a ping-by-ping basis

Single mapping campaign, Single vessel, single sensor provides sampling over widely spaced frequencies

- 2 surveys in 2016 and 2017
- 100, 200 and 400 kHz
- Video footage

Influence of frequency on:

- Receiver sensitivity
- Ensonification area of signal
- Absorption
- Directivity pattern at transmission
- Directivity pattern at receptions
- Gains

Verification of data processing

- 2 homogeneous areas (soft and hard sediment)
- Consistent ARC's between MBES backscatter measurements in 2016 and 2017

>>>indicates correct processing

BS difference between 2016 and 2017 measurements per frequency and sediment type lower than 1 dB in average

Reference: [5]

Single-frequency classification maps

Reference: [5]

Observations

- Different spatial acoustic patterns at each frequency
- Observed frequency dependency of BS
 - ♣ Fine sediment (~mud)
 - Coarse sediment (gravel, shell, reef)

How to combine these information into a single map?

Multispectral Bayesian Classification - Workflow

Multi-frequency classification maps

- Acoustic information per single frequency are combined in a single map
- Robust and repeatable classification method for multispectral backscatter data
- Most benefit is visible for fine sediments (for this specific survey area)

Qualitative comparison with video footage

- **S1** extensively hard sediment (gravel, boulders, shell, coral)
- S2 mix hard (gravel, boulders, shell, coral) and soft sediment (mud, fine sand)
- S3 soft sediment (mud, fine sand) with flora and gas seeps
- S4 soft sediment (mud, fine sand) with flora and fauna

Reference: [5]

- [1] Gaida, T.C.; Snellen, M.; van Dijk, T.A.G.P.; Simons, D.G. Geostatistical modelling of multibeam backscatter for full-coverage seabed sediment maps. Hydrobiologia **2018**, 1–25
- [2] Simons, D.G.; Snellen, M. A Bayesian approach to seafloor classification using multi-beam echo-sounder backscatter data. Appl. Acoust. **2009**, 70, 1258–1268.
- [3] Snellen, M.; Gaida, T.C.; Koop, L.; Alevizos, E.; Simons, D.G. Performance of multibeam echosounder backscatter-based classification for monitoring sediment distributions using multitemporal large-scale ocean data sets. IEEE J. Ocean. Eng. **2019**, 44, 142–155.
- [4] Ivakin, A.N.; Sessarego, J. High frequency broad band scattering from water-saturated granular sediments: Scaling effects. J. Acoust. Soc. Am. **2007**, 122, 165–171.
- [5] Gaida, T.C.; Tengku Ali, T. A.; Snellen, M.; Amiri-Simkooei, A.; van Dijk, T. A. G. .P.; Simons, D.G. A multispectral Bayesian Classification method for increased discrimination of seabed sediments using multi-frequency multibeam backscatter data Geoscience **2018**, 8, 455

Thank you very much for your attention

The research was supported by following organisations and companies:

